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ABSTRACT

This paper presents implementation results of several side
channel countermeasures for protecting the scalar multipli-
cation of ECC (Elliptic Curve Cryptography) implemented
on an ARM Cortex M3 processor that is used in security sen-
sitive wireless sensor nodes. Our implementation was done
for the ECC curves P-256, brainpool256rl, and Ed25519.
Investigated countermeasures include Double-And-Add Al-
ways, Montgomery Ladder, Scalar Randomization, Random-
ized Scalar Splitting, Coordinate Randomization, and Ran-
domized Sliding Window. Practical side channel tests for
SEMA (Simple Electromagnetic Analysis) and MESD (Mul-
tiple Exponent, Single Data) are included. Though more
advanced side channel attacks are not evaluated, yet, our
results show that an appropriate level of resistance against
the most relevant attacks can be reached.
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1. INTRODUCTION

Implementations of cryptographic protocols are known to
be vulnerable to side channel analysis, e.g. [24, 25, 27].
Measuring the timing, the power consumption or the EM
emanation of a cryptographic operation may expose secret
or private key data. Besides side channel analysis, fault
attacks are another threat to cryptographic implementations
and many attacks are now known to various crypto systems,
e.g., [20].
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Elliptic Curve Cryptography (ECC) is becoming the most
relevant public-key cryptosystem and seems to replace RSA
in the long-run because of its advantage regarding computa-
tion speed and key length. It finds extensive deployment in
the development of new smart security systems such as elec-
tronic passports and vehicular Ad-Hoc networks. Private
keys are used for the digital signature of messages (ECDSA),
the key establishment (ECDH), and decryption (ECIES)
[17].

Some applications in the Internet of Things (IoT) such
as vehicular Ad-Hoc networks have very demanding timing
bounds for the completion of a cryptographic operation that
can only be fulfilled by parallelized hardware implementa-
tions. In other IoT applications such as Ambient Assistant
Living timing constraints for wireless sensor nodes are much
more relaxed, and waiting one second for a rarely executed
public key crypto operation is acceptable.

Regarding side channel attacks, the most critical ECC op-
eration is the scalar multiplication (aka point multiplication)
that computes dP where d is an integer and P is a point on
an elliptic curve E defined over a field F,,. In either case, an
evaluation of the level of resistance to side channel and fault
attacks is necessary as simple power analysis attacks such
that visually inspecting one power trace of a scalar multipli-
cation with a private-key can compromise the entire private
parameter d, cf.[17].

The minimum requirement needs to be that the imple-
mentation shall prevent a simple read-out of private keys
using one measured trace. This may be sufficient for ECDSA
wherin the integer d used for the scalar multiplication is a
random number that changes in each run, but not for ECDH
and ECIES decryption where the attacker can choose the
base point and analyze multiple executions with the same in-
teger d. Typically, an appropriate security level requires that
countermeasures are integrated in the cryptographic imple-
mentation. A valuable state-of-the-art overview on known
attacks and countermeasures is given in [13].

In this paper we show implementation results of the scalar
multiplication using three curves over prime fieds: the NIST
P-256 curve [31], the Brainpool brainpoolP256rl curve [1],
and Bernstein’s domain parameter from the implementation
Ed25519 [6]. We denote this domain parameter as Ed25519.
The implementation was done on an ARM Cortex M3 Pro-
cessor that is also used in higher quality sensor nodes for
security applications. We implemented several side chan-
nel countermeasures that are practically tested for its re-
sistance on the most relevant attacks. We provide perfor-
mance results and side channel susceptibilities for our im-



plementation. We note that the most critical attacks are
counteracted. This is an improvement over lightweight ECC
libararies such as TinyECC which were not designed for side
channel resistance and turned out to be seriously exploitable
when tested [32].

We note that an efficient combination of multiple counter-
measures that resists all known passive and active attacks is
still an open research question. We hope that our work can
serve as a step forward towards building an ECC library for
lightweight applications with configurable security parame-
ters for side channel countermeasures.

2. ELLIPTIC CURVE CRYPTOGRAPHY

An elliptic curve F is a non-singular curve defined by the
following equation over an algebraic field K:

(1)

with the coefficients a1, a2, as,as,a6 € K. This equation
is known as Weierstrass equation.

In this work we deal with elliptic curves defined over a
finite field F, where p > 3 is prime and the discriminant
§ := —16(4a® + 27b%) is not null. The elliptic curve is given
by the short Weierstrass equation:

y* + arxy + azy = 2 + a2a” + asx + ap

E:y> =2 +ax+b. (2)

This elliptic curve consists a set of discrete points P :
(z,y). The set of points is expressed by:

E(lF,) =(z, y) €eFpxFy:y> =z’ +ax+bUco. (3)

oo denotes the point in infinity [29]. Hasse’s theorem pro-
vide an estimate of the number of points on E over F,. The
estimated points is given by [29]:

p+1—2yp<#EF,) <p+1+2yp. (4)

A high amount of points increased the level of protection.
In affine coordinates, an addition of two points P and Q is
given by the following equation [29]:

i)  —P=(z1, —y1),

i) P+Q=o0, ifP=-Q,

1wi) P+Q=(x3, y3), else P # Q,
1‘32)\2—1‘1—$2, (5)
y3 = M1 — x3) — 1, with

L [umirpza
= 32?+a ’LfP:Q

2y1
The elliptic curve can also be represented in projective
coordinates (X, Y, Z). The projective equation of the elliptic
curve is

Y?Z = X*+aXZ? +02°. (6)

The elliptic curve in Weierstrass form is just one represen-
tative of elliptic curves. There are many other curves such as
Jacobian-, Hessian-, Montgomery-, and Edwards- [9]. The
Twisted Edwards (7) curve is defined by the equation

E: a4+ y° =1+ d’y’ (7)
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wherin a and d are elements of the underlying field. The
parameter a = 1 yields an Edwards curve. One advantage
of using Edwards curve is their improved intrinsic resistance
to simple side channel attacks because of a strongly unified
formula for both point addition and point doubling [7]:

T1y2 + Y1T2  Y1Y2 — AT1T2 ) (8)
1+ drizayiy2’ 1 — doimayiy )

(z1,91) (22, 92) — (

Transformation between an elliptic cuve in short Weier-
strass form and Twisted Edwards form exists. These rules
are well described in [9, 30, 7).

3. SIDE CHANNEL ANALYSIS ON ECC

Private ECC keys are used for the digital signature of mes-
sages (ECDSA), key establishment (ECDH), and decryption
(ECIES) [17]. All these schemes compute the scalar multi-
plication with a known base point and a secret scalar. Ad-
versary capabilities, however, differ:

e For ECDSA, the scalar is a secret random number that
is used only once and the base point is the base point
of the elliptic curve.

e ECDH can be used with static or one-time key pairs,
accordingly, the scalar multiplication with the same
scalar is computed multiple times or only once and
the base point can be chosen by the attacker.

e ECIES decryption can typically be invoked multiple
times with the same scalar and chosen base points.

As result, for ECDSA, the adversary has to compromise the
scalar with one single measurement, while many measure-
ments of a secret scalar can be used in ECDH and ECIES
decryption.

Computation of the scalar multiplication is efficiently done
using the Double-And-Add algorithm shown in Algorithm 1
that is a left-to-right binary multiplication algorithm [4, 12].

Algorithm 1 Double-And-Add algorithm

Require: elliptic curve point P and a positive integer d =
(1, di—1,...,d1, d0)2
Ensure: Q=dP
1: Q« P;
2: for i from t — 1 to 0 do
3 Q+2Q;
4: Ifd; =1then Q<+ Q +P;
5
6

: end for
: Return Q;

Coron [12] has pointed out that a naive implementation of
Algorithm 1 is vulnerable if the point doubling (aka double
operation) and point addition (aka add operation) can be vi-
sually distinguished in the power measurements of a scalar
multiplication. Experimental results for distinguishing point
doubling and point addition are well known [17] and consti-
tute the most serious side channel threat. These are simple
side-channel attacks, either known as Simple Power Analysis
(SPA) or Simple ElectroMagnetic Analysis (SEMA) depend-
ing on the measurement process. Besides this, various other
attacks are published in the previous years. An overview
on known side-channel attacks on the scalar multiplication



and countermeasures can be found in [13, 22]. Of recent im-
portance are horizontal attacks that compare whether the
same operand is repeatedly used in the same measurement
trace of a scalar multiplication, e.g., the doubling attack
[14]. Refined Power Analysis (RPA) [15] and Zero-Value
Point Attack (ZPA) [3] exploit the leakage of points with a
coordinate of zero.

In [28] a powerful technique called “Multiple-Exponent,
Single-Data” (MESD) was introduced for an exponentiation
algorithm using the ’square-multiply’ algorithm and it is di-
rectly applicable to the scalar multiplication, see also [14].
Practical MESD results for elliptic curves are shown in [16,
32]. This attack can be seen as a simple form of a tem-
plate attack [11] that requires a test device with an identi-
cal implementation that additionally allows to set the scalar.
MESD does a visual inspection of the difference trace of the
measurement curve with the secret scalar and the measure-
ment curve with the hypothesized scalar, both using the
same base point. MESD checks the timing length of the
template matching. In more detail, to attack the i-th bit of
the scalar the adversary asks the test device to compute the
scalar multiplication with the i-th bit set to one. If the data
dependencies vanish in the difference trace for some subse-
quent double and add operations the guess is correct. Oth-
erwise, if significant differences show up again after one sub-
sequent double operation this indicates divergent processed
data and the guess is wrong, i.e., the next secret scalar bit
is zero. One measurement trace of the secret scalar can be
sufficient for analyzing the difference signal if the data de-
pendencies are sufficiently strong. Online Template Attacks
[5] follow a very similar approach.

For side channel countermeasures [13] lists the counter-
measures Indistinguishable Point Addition Formulae, Double-
And-Add Always, Montgomery Ladder, Randomized Scalar
Splitting, Scalar Randomization, Base Point Blinding, Ran-
domized Projective Coordinates, Randomized EC/Field Iso-
morphisms. According to [13] none of them is effective
against all known attacks. Indistinguishable Point Addition
Formulae, Double-And-Add Always and Montgomery Lad-
der are used to prevent SPA/SEMA and timing attacks. The
remaining countermeasures are designed to prevent template
attacks, DPA/DEMA, Comparative SCA, RPA /ZPA but for
each of them at least one attack is known.

4. OURECC LIBRARY SECLAB_ECC

We implemented the NIST P-256 curve [31], the Brain-
pool brainpoolP256rl curve [1], and Ed25519 [6]. The first
two elliptic curves are in the short Weierstrass form and
differ in the reduction function. The curve P-256 uses the
fast reduction and the brainpoolP256rl the Barrett reduc-
tion. The Curve25519 is a Twisted Edwards curve. All three
curves are implemented in affine and projective coordinates.

For the underlying finite field arithmetic we implemented
a standard scalar multiplication with the binary method, cf.
Algorithm 1. The finite field operation addition (algo. 2.5),
subtraction (algo. 2.6), multiplication (algo. 2.9), reduc-
tion (algo. 2.14) and fast reduction (algo. 2.19) are taken
from [17]. The division algorithm was taken from [33]. For
P-256 and brainpoolP256r1 the algorithms for the point ad-
dition and doubling in affine coordinates are implemented
according to (5). In projective coordinates we use the al-
gorithm ”add-2007-bl” for the addition and the algorithm
”dbl-2007-bl” for point doubling, both are from [8]. The
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Twisted Edwards curve is implemented using the algorithm
”add-2008-bbjlp” from [7].

The complete source code was written in programming
language C for an ARM Cortex M3 processor and is available
at [2].

4.1 Implemented Countermeasures

Our choice of countermeasures is based on previous state-
of-the-art surveys [13, 22] and practical considerations for
sensor nodes. We aim to study lightweight countermeasures
that prevent the most relevant simple attacks. We evaluate
each countermeasure on its own. We acknowledge that all
of them have known weaknesses that need to be fixed if the
weakness can be exploited in a given ECC protocol, usually
by combinations of countermeasures. We do not claim that
any single countermeasure on its own is sufficient to the
battery of all known passive and active attacks. Moreover,
the applicability of each attack needs to be analyzed in the
given ECC protocol. An efficient combination of multiple
countermeasures that resists all known passive and active
attacks is still an open research question.

4.1.1 Double-And-Add Always

This countermeasure carries out the add operation in each
iteration of the Double-And-Add Algorithm in Algorithm 1
in order to make SPA/SEMA attacks more difficult [22, 27,
13, 10, 12]. Its drawback is the presence of a pseudo oper-
ation which can be identified, e.g., using fault attacks and
the absence of data randomisation.

Algorithm 2 Double-And-Add Always

Require: A point P and a positive
(1, dz_1, dt_z, caey d1, do)z

Ensure: Q = dP

integer d

1: Q<+« P;

2: for i from t — 1 to 0 do
3. ity + 0

4: it «— 1 — di;

5: Q[ito] —2 Q[ito};

6: Q[itl] — Q[itl] -+ P;

7: end for
8: Return Q[0];

4.1.2  Montgomery Ladder

The Montgomery Ladder [22, 27, 13] aims to protect from
SPA/SEMA attacks. In contrast to the Double-And-Add
Always countermeasure, there is no dummy operation.

Algorithm 3 Montgomery Ladder

Require: A positive integer d = (1,di—1,d¢—2,...,d1,do)2
and a point P

Ensure: Qo = dP

1: Qo+ P;

2: Q1 «+ 2P;

3: for i = n — 2 down to 0 do

4 Qi—g; ¢ Qo+ Qy;

5 Quy < 2Quay;

6: end for

7: Return Qo;




4.1.3 Scalar Randomization

Scalar Randomization was first proposed by [12]. This
countermeasure randomly selects a scalar ' = d + k-e,
wherin k is the random value and € is the number of points on
the elliptic curve. This is possible because the multiplication
with a multiple of the group order € results in the neutral
element. Therefore it holds dP = d'P.

Algorithm 4 Scalar Randomization

Require: elliptic curve point P, a positive integer d =
(1,d¢—1,...,d1,do)2, and the number of points on the el-
liptic curve €

Ensure: Q=dP

: kEr {0, 1}n;

cd =d+k-¢

: t' = bitlen(d);

Q<+ P

for i from t' — 1 to 0 do

Q+2Q;
If d; =1 then Q + Q + P;

: end for

: Return Q;

LoD W

In Algorithm 4 we combine this countermeasure with the
Double-And-Add algorithm of Algorithm 1. Exposure of the
randomized scalar d’ can be seen equivalent to the exposure
of d.

In practice, we used a 32-bit random number k£ that re-
sults in a 288-bit randomized scalar for 256-bit ECC curves.
Clearly, the choice of the bitlength of k is a practical tradeoff
between security and performance. Naturally, 32-bit size is
a favorable size for a 32-bit microcontroller. From the se-
curity point of view given that the adversary has only one
side channel measurement with a secret scalar a repetitive
recording of 2°? side channel measurements of a scalar mul-
tiplication with all candidates for k on a test device for tem-
plate matching is practically out of reach. However, other
attacks exist on this countermeasures that make use of the
birthday paradox, e.g., [14]. The birthday paradox also ap-
plies if the adversary is able to collect a high number of
measurements with a secret and a hypothesized scalar. Con-
sidering the birthday paradox a 32-bit random number k can
be too small.

4.1.4 Randomized Scalar Splitting

Another approach for randomization is Randomized Scalar
Splitting [22]. The secret scalar d is randomly split in two
values d; and ds for each scalar multiplication. It holds that
dP = d1P + d,P.

In Algorithm 5 we combine this countermeasure with the
Double-And-Add algorithm of Algorithm 1. Exposure of the
scalars di and ds can be seen equivalent to the exposure of d.
Because of two scalar multiplications the runtime is almost

doubled.

4.1.5 Randomized Projective Coordinates

Randomized projective coordinates are another counter-
measure proposed in [12]. Theoretically, this countermea-
sure is considered to be highly efficient against a broad range
of passive and active attacks except for RPA/ZPA [13, 18].
A point on the elliptic curve with projective coordinates
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Algorithm 5 Randomized Scalar Splitting

Require: elliptic curve point P, a positive integer d =
(1, di—1,...,d1, d0)2
Ensure: Q=dP
: di €r {0,1}Y
dz =d— d1;
t1 = bitlen(d,);
to = bitlen(ds);
QP
for 7 from t;1 — 1 to 0 do
Q<+ 2Q;
If di; =1 then Q + Q + P;
end for
: R+ Py
: for i from t2 — 1 to 0 do
R+ 2R;
If do; =1 then R+ R + P;
: end for
: Return Q + R;;

(X,Y, Z) is randomly mapped to another point with projec-
tive coordinates (AX, \Y; AZ) with a random scalar X # 0.

Algorithm 6 Randomized Projective Coordinates

Require: elliptic curve point P in projective coordinates
(X,Y, Z) and a positive integer d = (1,di—1, ..., d1,do)2
Ensure: Q=dP

1: Q« P;

2: for i from ¢t — 1 to 0 do

3: Aegr{0,1}" ~ {0};

4. (X)Y,2) + (AX,A\Y,\2);
5 Q<+ 2Q;

6: Ifdi=1then Q<+ Q +P;
7: end for

8: Return Q;

Algorithm 6 is combined with the Double-And-Add al-
gorithm of Algorithm 1. Note that we applied the ran-
domization in each iteration of the Double-And-Add algo-
rithm. Other choices exist. The randomization can be
done once before each scalar multiplication and, alterna-
tively, the randomization can also occur after each point
addition and doubling [12]. Applying this randomization in-
side the Double-And-Add algorithm provides an additional
resistance against horizontal attacks. A was a 32-bit ran-
dom number. Again, the choice of the bitlength of \ is
a practical tradeoff between security and performance, cf.
SubSect. 4.1.3.

4.1.6 Randomized Sliding Window

Sliding window methods process a small fix amount of
w bits of the secret scalar per iteration. They reduce the
number of additions and require the pre-computation of a
few points depending on the window size w. From SPA
resistance point of view, an adversary additionally has to
identify the used precomputated addend. A drawback of
this method is that the number of sliding window algorithms
for practical use of constrained platforms is limited.

A method offering enhanced resistance is a randomised
sliding window method [26].

In Algorithm 7 we adapted the sliding-window exponen-



Algorithm 7 Randomized Sliding Window
Require: elliptic curve point P, precomputed Points

Po.A.Pzwfl a positive integer d= (1, dtfh ceey dl, do)g.
Ensure: Q=dP

2:
3: while i > 0 do

4 wegr{2,4}

5: I+ Z;U:_ol 27 % di7w+j+1§
6: for j from 1 to w do

7 Q- Q+Q;

8: end for

9: Q<+ 2Py

14— 1 —w;

11: end while

: Return Q;

f uu;uuuuuulun_xyﬁ_x'_

Figure 1: Measurement setup.

tiation algorithm 14.85 of [4]. Our implementation includes
a randomized choice of the window size of either w = 2 or
w = 4 for each iteration of the scalar scan and a randomized
permutation of the precomputated points in each scalar mul-
tiplication. An attack on this countermeasure is described
by Walter [34].

5. EXPERIMENTAL RESULTS
5.1 Measurement Set-Up

Our measurement setup consists of a target device and a
digital oscilloscope. As the target device we used a high-
performance sensor node called LOTUS from MEMSIC Inc.
This node provides an ARM Cortex® M3 32-bit processor,
a USB and a 802.15.4 Radio interfaces. The microcontroller
is clocked with 16 MHz [19]. The USB interface is used
for data transfer and power supply. We measured the elec-
tromagnetic emanation with the near-field probe LF-U-2,6
from Langer EMV on the microcontroller surface. We scan
the surface manually to find a good position. After we have
found a good position as shown in Figure 1 we used this
for all our experiments. In a good position the processor
instructions are clearly visible. As a digital oscilloscope we
used the LeCroy WaveRunner 640Zi. The sampling rate is
100 mega samples per second and the signal was amplified
by the preamplifier PA 303 from Langer EMV.

5.2 Performance

The execution time of the scalar multiplication depends on
the processed data. Using one randomly chosen fixed scalar
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and Algorithm 1 the resulting execution times are shown in
Table 1. The microprocessor was clocked with 16 MHz and
the execution time was measured with the oscilloscope.

The execution time in projective coordinates is signifi-
cantly smaller than in affine coordinates, because the algo-
rithm in affine coordinates performs in each point addition
and doubling operation a modular division. The modular
division has the largest runtime. The curve P-256 was im-
plemented by the fast reduction and has the smallest mea-
sured runtime with 0.51 s, the runtime in affine coordinates
is larger by a factor of about 4. In projective coordinates,
Ed25519 yielded a runtime of 1.10 s and brainpool256r1
turned out to be the slowest with 1.33 s. In contrast, in
affine coordinates, the implementation of brainpoolP256r1
took 2.22 s while Ed25519 had the slowest runtime with
4.51 s. The reason for this is that the modular division was
calculated twice in each point operation.

Table 2 also includes the percentage increase in execution
time for the implemented countermeasures using projective
coordinates. Again, these data are based on the same ran-
domly chosen fixed scalar as in Table 1 and show a randomly
chosen special case. The percentage increase of the three
curves is roughly identical. The comparison measurement
was done with Algorithm 1, the countermeasure Random-
ized Sliding Window results in an even faster execution time.
The mean increase of Randomized Scalar (12.3 %) is slightly
smaller than using Coordinate Randomization (15.3 %). In
both cases the randomization was done with a 32-bit random
number. A randomized scalar is approximately 288 bit long
and causes 32 additional iterations in Algorithm 1 which
corresponds to a percental increase of approx. 11% which is
in good correspondence with the experimental results. The
countermeasure Randomized Scalar Splitting uses a 256-bit
random number and as result the execution time is approx-
imately doubled. Regarding Randomized Projective Coor-
dinates the percental increase is presumably mainly due to
the fact that the randomization is done in each iteration
of the double-and-add algorithm. The performance should
be significantly better if the the randomization is done only
once before the scalar multiplication. From the performance
point of view the use of Randomized Sliding Window is of
special interest. It can further be observed that the mean
performance of Double-And-Add Always (37.7 %) turned
out to be better than for the Montgomery Ladder (44.7 %)
using our library SECLAB_ECC.

5.3 Side Channel Analysis: SEMA

Our primary objective is that simple side channel analysis
is not feasible using one single measurement. For this, we
tested the implementations on SEMA and MESD.

In the first step, we tested the unprotected implementa-
tions in affine and projective coordinates. This is useful to
get first results on the susceptibility to distinguish the dou-
ble and add operations. Our results are shown in Table 3.

Both the implementations of P-256 and brainpoolP256r1
failed the SEMA test using affine coordinates as differences
at the transitions between operations are directly visible. In
consequence, the entire sequence of doubling and addition
can be read-out.

In Figure 2a we illustrate the differences for brainpoolP256r1:

The blocks numbered 2,4 and 6 show modular divisions
which take approximately 90% of the runtime that are used
in both double and add operations. The structures num-



Table 1: Execution time using a fixed random scalar in affine and projective coordintes.

| Implementation || P-256 | brainpoolP256rl | Ed25519 |
Affine Coordinates 2.09 s 2.22 s 4.51 s
Projective Coordinates || 0.51 s 1.33 s 1.10 s

Table 2: Runtime using a fixed random scalar in projective coordinates and the percentage increase in execution time for the
listed countermeasures.

| Implementation || P-256 | brainpoolP256r1 | Ed25519 |

| Projective Coordinates [ 051 s | 1.33 s | 1.10s |
Double-And-Add Always 139 % 143 % 131 %
Montgomery Ladder 145 % 154 % 135 %
Scalar Randomization 110 % 117 % 110 %
Randomized Scalar Splitting 186 % 207 % 196 %
Randomized Projective Coordinate || 112 % 118 % 116 %
Randomized Sliding Window 86 % 88 % 88 %

Table 3: Side channel results of the scalar multiplication without countermeasures.

Result
Implementation || P-256 | brainpoolP256r1 | Ed25519 | Method
Affine coordinates - - + SEMA
Projective coordinates + + + SEMA
Projektive coordinates - - - MESD

— :vulnerability proven
+ : vulnerability not proven

Table 4: Side channel results of the scalar multiplication of the countermeasures.

Result
| Implementation || P-256 | brainpoolP256r1 | Ed25519 | Method |
Double-And-Add Always - - - MESD
Montgomery Ladder - - - MESD
Scalar Scalar Randomization —+ + + MESD
Randomized Scalar Splitting + + + MESD
Randomized Projective Coordinate + + + MESD
Randomized Sliding Window + + + MESD

— :vulnerability proven
+ : vulnerability not proven
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bered 3 and 5 mark an add operation, the structures marked
1 and 7 mark a double operation. Similarly, differences
in the transitions between operations can be seen for the
curve P-256. In Figure 2b the upper curve shows the opera-
tions double followed by add and the lower curve shows two
double operations. Such obvious differences were not de-
tected for Ed25519 which can be explained with the use of
an unified addition formula in contrast to P-256 and brain-
poolP256r1 which used the formulas of (5). However, data
dependent runtime of arithmetic operations can also be seen
for Ed25519 in Figure 2c when comparing the pattern of the
curves at the vertical dashed lines.

Using projective coordinates, transitions between opera-
tions are not directly visible which holds for all three curves.
We cannot entirely exclude that a more demanding analysis
might reveal other markers which can be used for distin-
guishing the operations, e.g. by timing analysis of opera-
tions. However, in summary, SEMA is much more difficult
in projective coordinates.

P
3 4 5

(a) Elliptic curve brainpoolP256r1.

(b) Elliptic curve P-256.

(c) Elliptic curve Ed25519.

Figure 2: Detailed view to transitions between arithmetic
operations.

5.4 Side Channel Analysis: MESD

The analysis of MESD was applied to the three curves in
projective coordinates. The implementations of the three

curves clearly failed the MESD test. This clear observation
can be explained with the data dependent runtimes of arith-
metic operations.

In each figure, the top measurement shows the mean value
of 10 single measurements with the secret scalar, the sec-
ond measurement shows the mean of 10 single measure-
ments with the hypothesized scalar, the third measurement
shows the difference between first and second measurement,
and the fourth measurement shows the difference between
the first measurement and a single measurement with the
hypothesized scalar. It can be seen that the hypothesized
scalar can be successively corrected to correspond with the
secret scalar.

Similar results for MESD were revealed for the counter-
measures Double-And-Add Always and Montgomery Ladder
for all three curves.

Countermeasures using data randomization withstand MESD

as expected because the precondition of processing identical
data in two implementations does not hold anymore with
high probability for a 32-bit random number. Exemplarly,
we show the application of MESD to the countermeasure
Randomized Coordinates in Figure 4.

(b) Second hypothetical key.

(¢) Third hypothetical key.

Figure 3: Viability of MESD.



Figure 4: MESD applied to P-256 with Coordinate Ran-
domisation.

6. CONCLUSION

As we did not conduct practical tests for all relevant side
channel attacks, e.g. we did not cover horizontal attacks
(RPA, ZPA), we cannot claim resistance to all known at-
tacks. However, we are confident that that the most crit-
ical attacks can be counteracted. In our implementation,
the add and double operations were found to be not dis-
tinguishable in projective coordinates. This allows to even
skip protections such as Double-And-Add Always or Mont-
gomery Ladder in these circumstances. Using randomization
countermeasures we show that also more advanced attacks
such as MESD can be prevented.

We note that an efficient combination of multiple counter-
measures that resists all known passive and active attacks is
still an open research question. We hope that our work can
serve as a step forward towards ECC for lightweight applica-
tions with configurable security parameters for side channel
countermeasures.
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