EM-Based Detection of Hardware Trojans on FPGAs
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Abstract—The detectability of malicious circuitry on FPGAs
with varying placement properties yet has to be investigated. The
authors utilize a Xilinx Virtex-II Pro target platform in order
to insert a sequential denial-of-service Trojan into an existing
AES design by manipulating a Xilinx-specific, intermediate file
format prior to the bitstream generation. Thereby, there is no
need for an attacker to acquire access to the hardware description
language representation of a potential target architecture. Using
a side-channel analysis setup for electromagnetic emanation (EM)
measurements, they evaluate the detectability of different Trojan
designs with varying location and logic distribution properties.
The authors successfully distinguish the malicious from the
genuine designs and provide information on how the location and
distribution properties of the Trojan logic affect its detectability.
To the best of their knowledge, this has been the first practically
conducted Trojan detection using localized EM measurements.

Keywords—Hardware Trojan injection, side-channel analysis,
electromagnetic emanation, Trojan placement, RapidSmith.

I. INTRODUCTION

Trust and in particular the proof of immutability of software
components are indispensable needs in computer science for
many years now. Throughout the last decade, trustworthi-
ness in hardware components got equally important as these
components should provide a reliable base for their software
counterparts [1]. In order to assert oneself in the economic
competition, many vendors abandon in-house development and
fabrication, but instead set their hopes on external building
blocks, and furthermore separate design from fabrication. This
outsourcing incorporates new players and causes new threats
regarding trustworthiness. Especially the threat of an untrust-
worthy player adding additional malicious circuitry, a so-called
hardware Trojan horse [2], at the fabrication or deployment
phase poses a severe danger. Consequential demands for means
to detect modifications of the design arise.

Since the Trojan’s target is to be not apparent, the design
principle is to keep its size to a minimum. Different archi-
tectural types of Trojans have been presented, fulfilling this
principle. Experience has shown that in particular sequential
Trojans are hard to detect, since they are on the one hand very
hard to trigger, because they listen to a sequence of bits of the
input which is most likely not covered by any test case and on
the other hand can be implemented by only occupying very
few area[3]. However, side-channel analysis put out to be a
strong mean to detect these malicious components [4].
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In this work, we present techniques to place additional
circuitry to an FPGA design without needing its hardware
description language (HDL) representation. For that, we use
RapidSmith [5], a library for low-level manipulation of par-
tially placed-and-routed FPGA designs in order to modify
an intermediate data format of a Xilinx Virtex-II Pro FPGA
design. We show how to attach a sequential hardware Trojan
to the IO ports of an existing Advanced Encryption Stan-
dard (AES) architecture and permute the location and the
distribution of the logic gates of the Trojan in order to give
statements at which position the Trojan is harder to detect
using electromagnetic emanation (EM) side-channel analyses.
The main part of this article will propose techniques to
detect the different implementations of the Trojan by locally
measuring the EM of the FPGA. We do not only aim to detect
the Trojan, but also provide first suggestions at which positions
on the FPGA the Trojan is harder to detect. In order to achieve
these goals, we utilize an electromagnetic probe and step over
the package of the FPGA measuring the electromagnetic field
for each step point. By utilizing simple analysis techniques,
we were able to successfully distinguish the malicious from
the genuine designs based on the EM side channel.

The remainder is structured as follows. First, we give an
overview of related work. Sect.II describes a typical FPGA
design flow and potential attack scenarios. Sect.IIl presents
the Trojan and the measurement setup. Sect. IV provides results
and conclusions are drawn in Sect. V.

A. Previous Work

Several Trojan detection mechanisms have been proposed
recently, which can basically be subdivided into destructive
and non-destructive approaches. Since the former comprise
rather costly techniques, significantly more research has been
accomplished with regard to the latter. Non-destructive de-
tection methods can further be distinguished in terms of
the countermeasures added to a given design (architectural
changes), which should simplify the detection process of a
potential Trojan [6]. Side-channel analysis based detection ap-
proaches use physical characteristics such as timing [7], power
consumption [4], [8], or multiple characteristics [4] to generate
“hardware fingerprints”, which are then used to distinguish a
malicious design from a genuine one. Some authors proposed
to use EM as a further parameter to their multiple-parameter
side-channel detection approaches[4], [9], but to the best
of our knowledge, only [10] actually accomplished a setup
including EM measurements in their experiments. As opposed
to [10], who used EM traces gathered from a single location
on top of an FPGA, we propose to use a localized approach
by stepping over the FPGAs package.
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Fig. 1: Xilinx design flow and RapidSmith interface

II. FPGA DESIGN FLOW AND ATTACKER MODEL

The top row of Fig.1 describes an FPGA design flow
using Xilinx build tools, starting with the mapping of a netlist
to the available, FPGA-specific resources. An attacker with
access to these parts of the development chain may incorporate
malicious circuitry into an existing design by modifying the
intermediate *.ncd file format. This task can be simplified
by employing third-party tools such as RapidSmith [5], which
is a library for low-level manipulation of partially placed-
and-routed FPGA designs. RapidSmith is a set of tools and
APIs written in Java, which ease the import, manipulation,
and export of FPGA designs. It facilitates to manipulate
existing designs, add further circuitry, and export the design,
by providing a low-level interface to the main components of
the FPGA. It is compatible to the Xilinx Design Language
(XDL), a human-readable file format equivalent to the Xilinx
proprietary Netlist Circuit Description (NCD).

Fig.1 shows that different possible entry points to the
RapidSmith tools exist. For our investigations, we used Rapid-
Smith release 0.5.2 and provided it a placed-and-routed design
in *.xdl file format by converting the *.ncd file to an *.xdl
file with Xilinx’s xd1 tool in advance. Although RapidSmith
does not allow direct manipulation of *.bit files, an adversary
may also reverse-engineer one using tools such as the Bitfile
Interpretation Library (BIL)' [11] and apply a similar attack
afterwards. In today’s security-critical FPGA applications,
the deployed bitstreams are usually encrypted. Nevertheless,
several works in the recent past demonstrated that based on
side-channel analyses these encrypted configurations can be
retrieved for different types of FPGA platforms[12], [13].

III. TROJAN DESIGN AND MEASUREMENT SETUP

As a target design, we selected an AES-128 architecture.
Since the Trojan should be kept small in size, we decided to
implement a denial-of-service (DoS) Trojan, which required
only 15 slices and hence, did not modify the original bitstream
appreciably (the overall design needs 2222 slices).

We injected the same Trojan as presented in [14]. Taking
existing hardware Trojan taxonomies [15], [16], [17] into ac-
count, this Trojan can be categorized as a sequential denial-of-
service Trojan placed next to the I/Os, which can be triggered
externally. Such sequential Trojans are particularly hard to
detect, since the kill sequence is most likely not covered by any
test case and they can be implemented by only occupying very
few area. The Trojan listens to two of the input signals and
waits for a 30-bit kill sequence to be present. Since our data
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Fig. 2: Stepper table, SASEBO-G, and HF near-field probe

input port only has a width of eight bits, previous inputs have to
be memorized. We store the incoming data in two 15-bit wide
shift registers, which are connected to two of the data input
bits. These flip-flops use one of the input handshaking signals,
which indicates whether new data is available at the input, as
clock signal. If both sequences of the two input bits match a
predefined kill sequence, another input bit gets inverted.

Our measurement setup consists of the following parts: the
SASEBO-G side-channel evaluation board, a digital storage
oscilloscope (the LeCroy WavePro 725Zi), an EM stepper
device with an EM measurement probe, and a PC running
Matlab as controlling software. Fig.2 shows the SASEBO
board and the EM stepper on the left side and a zoom into the
EM stepping location on the right side. The SASEBO board
is connected to a PC via a serial interface. It consists of two
FPGAs, one Virtex-II Pro XC2VP30 and one Virtex-II Pro
XC2VP7. One FPGA can be used as a controller while the
other FPGA is used to evaluate a cryptographic implemen-
tation. Both FPGAs have been clocked with a frequency of
16 MHz, supplied by a Digimess FG100 function generator.

We used the Virtex-II Pro XC2VP30 as the control FPGA
and configured the Virtex-II Pro XC2VP7 with either the
genuine or the Trojan-containing design. We further used
a serial-to-AMBA APB bus interface to access the internal
registers of the designs. The communication between the two
FPGAs works as follows: First, the PC transmits 256 bits of
data (the 128-bit cipherkey and a 128-bit plaintext message)
over the serial interface. This data is stored in an internal
register. After that, the data is transmitted to the evaluation
FPGA (in chunks of eight bits where the correct order and
the timing is guaranteed by a dedicated handshake protocol).
After the AES calculation, the result is sent back to the
control FPGA, which transfers the data back to the PC. Fig.3
shows a schematic view of the setup and the implemented
communication flow.

As an EM probe, we used a magnetic near-field probe from
Langer EMV Technik (LF B3). The probe was attached to a
stepper table which can be controlled by software via Matlab.
The stepper allows to step over the evaluation FPGA. The
accuracy (the number of step points and the step window) can
be configured in software. In our experiments, we stepped over
a window of about 1 x 1 centimeters and moved the probe
in steps of 300 um (31 steps in the x and y axis). At each
step location, we measured 2 500 traces of the same operation
(keeping key and message data constant) and calculated the
mean trace in order to reduce noise. We therefore obtained
961 mean EM traces for each implementation. We set the
sampling rate of the oscilloscope to 500 MS/s and configured
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Fig. 3: Schematic view of the measurement setup

the oscilloscope to record the traces in a sequence mode.
This means that 500 traces are recorded in a sequence by the
oscilloscope and are transferred to the PC in sets of 500 traces
which significantly improves the measurement speed.

In order to successfully locate and identify the injected
Trojan on the Xilinx Virtex-II Pro XC2VP7, it is necessary
to have knowledge about the layout and the individual com-
ponents included in the FPGA. The XC2VP7 features an
embedded PowerPC processor which can be clearly identified
in the layouts (cf. major building block in Fig. 4a—Fig. 4f). The
FPGA further provides 8 RocketlO transceiver blocks, 1232
Configurable Logic Blocks (CLBs)?, 44 dedicated 18 x 18 bit
hardware multipliers, 44 18 kbits Block RAMs, and 4 Digital
Clock Managers (DCMs). The entire Virtex-II Pro family has
been fabricated in a 130nm CMOS process technology with
9 metal layers.

We developed a Java program using the RapidSmith API,
which allows us to inject the Trojan into the final FPGA layout.
The program is able to place the Trojan at different locations
in the design. We generated six different FPGA designs where
the Trojan has been placed: 1) in the bottom-left corner of the
FPGA, 2) in the top-right corner, 3) in the center, 4) distributed
over the whole layout, 5) at the right side near the I/O-lines,
and 6) automatically after the design has been completely re-
routed by the Xilinx ISE place-and-route tool.

Fig.4 shows the six designs and illustrates the principal
layout of the Virtex-II Pro die. The PowerPC is drawn as a
yellow box right in the middle of the layout. Block RAMs
(BRAMs) are drawn in purple color (six vertical lines) and
the Digital Signal Processing (DSP) units are drawn in orange.
The clock is represented in brown (vertical line in the middle)
or dark-blue (horizontal lines). Multi-gigabit transceivers and
Digital Clock Managers (DCMs) are located in the top and
bottom sides of the BRAMs. We further marked all required
(and used) CLBs in white color and all unused CLBs are drawn
in blue. For example, Fig. 4f uses different CLBs than the other
designs because the design has been automatically re-routed by
the Xilinx place-and-route tools. For all other designs, we told
the router tool to route only those parts which have not been
routed before (thus, keeping the overall layout and resource
requirements nearly constant).

The resource requirements of the Trojan itself are as
follows. Since in total a sequence of 30 bits (15 bits from
DatalnxDI[0] and 15 bits from DatalnxDI[2]) has to be stored,
30 flip-flops (FFs) are needed. A Virtex-II Pro slice contains
2 FFs so we need a total amount of 15 slices to implement
the Trojan. In particular, we decided that the FFs of the

2Each CLB of the XC2VP7 consists of 4 slices and two 3-state buffers
where each slice consists of two 4-input LUTs and two FF registers.

top-half of the slices are used to store the sequence of
DatalnxDI[0] and the FFs of the lower-half are used to store
the sequence of DatalnxDI[2]. These FFs are further connected
to a shift register. For this purpose, we used the Look-up
Tables (LUTs) of the available slices and implemented the
logical function of a kill-sequence comparator. Because the
LUTs from the top-half and lower-half of a slice have four
inputs (D1—D4), we can compare two bits with one LUT. The
first input is used for the first bit of the sequence, the second
input for the first bit of the fixed kill sequence to compare
with, the third input for the second bit of the sequence,
and the fourth input for the second bit of the kill sequence.
The comparison is done with the following logic function:
((D1IAD2)V(D1IAD2))A((D3AD4)V (D3AD4)). All the
resulting intermediate results are combined with a logic AND,
and the final result is XORed to the DatalnxDI[1], which inverts
the signal if the sequence at the inputs match the kill sequence
(final result equals 1). Note that in Fig.4d, we distributed the
Trojan logic on 15 different slices in 15 different CLBs. For all
other designs, we tried to use all freely available slices within
one CLB to inject the Trojan (needing 4 CLBs at the most).

IV. RESULTS

We compared the EM traces of the genuine design with
six different malicious designs containing differently placed
Trojans. For this purpose, we calculated the absolute difference
of all measured EM traces for the 961 EM-stepping points.
Furthermore, we only focused on the I/O communication part
of the implemented AES core since we assume Trojan activity
in that time interval.

Regarding the post-processing of the traces, we applied the
following techniques. First, we aligned the traces in horizontal
dimension because they were not perfectly aligned because
of noise and clock jitter. Second, in order to identify points
of interest (i.e., points where we assume a Trojan-dependent
leakage), we calculated the variance for each difference vector
and considered the sample point with the highest value.

Fig. 5a to Fig.5f depict the EM-signal differences of the
genuine design and the six different malicious designs. In order
to create the 2-D plots, we mapped the difference vector to a
matrix with 31 rows and 31 columns. Each point represents
a different EM-probe location where the color represents the
difference of the mean EM traces at the point of interest
(blue means almost no difference and red indicates a high
variance). As a first observation, one can identify the high
variance of the re-routed design. This was expected because
the entire design was automatically re-routed and provides a
significant difference in the EM emanation compared to the
original design. Interestingly, it shows a high variance in the
top-right corner where the Trojan has been placed to. Note
that we measured the emanation over an area of about 1 x 1
centimeters, so the plot shows not only the direct EM signals of
the FPGA die (assumed to be located in the middle of the plot)
but also the indirect emanation from bonding wires including
ground lines and I/O communication.

It also shows that when the Trojan has been placed in
the top-right or bottom-left corner of the FPGA, the Trojan-
dependent signals are higher than in cases where the Trojan
has been placed in the center of the FPGA or when the Trojan
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Fig. 4: The six FPGA designs with the Trojan placed at
different locations (Trojan logic drawn in black)

has been distributed over the layout. The difference in Fig. 5a
(top-right) and Fig. 5b (bottom-left) are higher than the signal
difference in Fig.5c (center) and Fig.5d (distributed). The
signal differences of Fig.5e (near I/0) seem to be higher but
not as significant as the results obtained as for the top-right
and bottom-left cases. There are several possible reasons for
that observation. One reason might be the fact that the Trojans
that have been located near to VCC or ground lines (like for
the top-right and bottom-left cases) have a higher influence
(through EM-signal modulation or shorter wire lengths) on
the power supply signals and can therefore be more easily
detected. The Trojans that have been placed in the top-right
and bottom-left corners are indeed close to many VCC and
ground pins of the FPGA. Another reason could be that if
the required CLBs of a Trojan are located right next to each
other or are placed very close together, the stronger will be
the signal leakage. For the top-right and bottom-left cases,
CLBs have been used that are unused by the genuine design.
The Trojan that has been placed in the center of the FPGA
has been placed right next to CLBs that already consume a
significant amount of power.

V. CONCLUSIONS

We presented first results of EM-stepping analyses of
hardware Trojans that have been injected into an FPGA. We
were successfully able to detect if a hardware Trojan was
integrated into the design by comparing the EM emanations
with a reference design. Six different FPGA designs were
investigated where the Trojan logic was placed differently over
the entire FPGA layout. We evaluated the efficiency of EM
side-channel based Trojan detections and identified that the
location of the Trojan logic plays an important role in the
detectability of the malicious circuit.

As future work, we plan to use different and more fine-
grained EM probes on a de-capsulated/open FPGA. Further-
more, we want to compare the efficiency of SCA-based Trojan
detection on ASIC and FPGA-based designs.
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Fig. 5: Difference between Trojan-free and malicious designs
for six different Trojan-placement locations
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