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In order to protect FPGA designs against IP theft and related issues such as product cloning, all major
FPGA manufacturers offer a mechanism to encrypt the bitstream that is used to configure the FPGA. From
a mathematical point of view, the employed encryption algorithms, e.g., AES or 3DES, are highly secure.
However, it has been shown that the bitstream encryption feature of several FPGA families is susceptible to
side-channel attacks based on measuring the power consumption of the cryptographic module. In this paper,
we present the first successful attack on the bitstream encryption of the Altera Stratix II and Stratix IIT
FPGA families. To this end, we analyzed the Quartus II software and reverse-engineered the details of the
proprietary and unpublished schemes used for bitstream encryption on Stratix II and Stratix III. Using this
knowledge, we demonstrate that the full 128-bit AES key of a Stratix II as well as the full 256-bit AES key of
a Stratix III can be recovered by means of side-channel attacks. In both cases, the attack can be conducted
in a few hours. The complete bitstream of these FPGAs that are (seemingly) protected by the bitstream
encryption feature can hence fall into the hands of a competitor or criminal — possibly implying system-
wide damage if confidential information such as proprietary encryption schemes or secret keys programmed
into the FPGA are extracted. In addition to lost IP, reprogramming the attacked FPGA with modified code,
for instance, to secretly plant a hardware Trojan, is a particularly dangerous scenario for many security-
critical applications.
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1. INTRODUCTION

Ubiquitous computing has become reality and has began to shape almost all aspects of our life, ranging from
social interaction to the way we do business. Virtually all ubiquitous devices are based on embedded digital
technology. As part of this development, the security of embedded systems has become an increasingly im-
portant issue. For instance, digital systems can often be cloned relatively easily or Intellectual Property (IP)
can be extracted. Also, ill-intended malfunctions of the device or the circumvention of business models based
on the electronic content — which is regularly happening in the pay-TV sector — are also possible. Another
flavor of malicious manipulation of digital systems was described in a 2005 report by the US Defense Science
Board, where the clandestine introduction of hardware Trojans was underlined as a serious threat [DSB
2011]. In order to prevent these and other forms of abuse, it is often highly desirable to introduce security
mechanisms into embedded systems which prevent reverse-engineering and manipulation of designs.

In the field of digital design, Field Programmable Gate Arrays (FPGAs) close the gap between pow-
erful but inflexible Application Specific Integrated Circuits (ASICs) and highly flexible but performance-
limited microcontroller (1LC) solutions. FPGAs combine the advantages of software (fast development, low
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non-recurring engineering costs) with those of hardware (performance, relative power efficiency). These ad-
vantages have made FPGAs an important component in embedded system design, especially for applications
that require heavy processing, e.g., for routing, signal processing, or encryption.

Most of today’s FPGAs are (re-)configured with bitstreams, which is the equivalent of software program
code for FPGAs. The bitstream determines the complete functionality of the device. In most cases, FPGAs
produced by the dominant vendors use volatile memory, e.g., SRAM to store the bitstream. This implies that
the FPGA must be reconfigured after each power-up. The bitstream is stored in an external Non-Volatile
Memory (NVM), e.g., EEPROM or Flash, and is transferred to the FPGA on each power-up.

One of the disadvantages of FPGAs, especially with respect to custom hardware such as ASICs, is that
an attacker who has access to the external NVM can easily read out the bitstream and clone the system, or
extract the IP of the design. The solution that industry has given for this issue is a security feature called
bitstream encryption. This scheme is based on symmetric cryptography in order to provide confidentiality
of the bitstream data. After generating the bitstream, the designer encrypts it with a secure symmetric
cipher such as the AES, using a secret key kjcsign. The encrypted bitstream can now be safely stored in the
external NVM. The FPGA possesses an internal decryption engine and uses the previously stored secret key
krpaa to decrypt the bitstream before configuring the internal circuitry. The configuration is successful
if and only if the secret keys used for the encryption and decryption of the bitstream are identical, i.e.,
kgesign = krpaa. Now, wire-tapping the data bus or dumping the content of the external NVM containing
the encrypted bitstream does not yield useful information for cloning or reverse-engineering the device,
given the adversary does not know the secret key.

The cryptographic scheme used by Xilinx FPGAs starting from the old and discontinued Virtex-II family
to the recent 7 series is 3DES or AES in Cipher Block Chaining (CBC) mode [Krueger 2004; Tseng 2005].
Recent findings reported in [Moradi et al. 2011] and [Moradi et al. 2012] show the vulnerability of these
schemes to state-of-the-art Side-Channel Analysis (SCA). Indeed, it has been shown that a side-channel
adversary can recover the secret key stored in the target FPGA and use it for decrypting the bitstream.
More recently, similar findings have been reported for bitstream security feature of a family of flash-based
Actel FPGAs of Microsemi [Skorobogatov and Woods 2012].

Side-channel attacks exploit physical information leakage of an implementation in order to extract the
cryptographic key. In the particular case of power analysis, the current consumption of the cryptographic de-
vice is used as a side channel for key extraction. The underlying principle is a divide-and-conquer approach,
i.e., small parts of the key, e.g., 8 bits, are guessed, and the according hypotheses are verified. This process
is repeated until the whole key has been revealed [Eisenbarth et al. ; Kocher et al. 1999].

In this paper, we analyze the bitstream protection mechanism (called design security) of Altera’s Stratix IT
and Stratix III FPGA families. We give a detailed description of this real-world attack illustrating the steps
required to perform a black-box analysis of a mostly undocumented target, i.e., the design security feature of
the targeted FPGA families. Similar to the attacks on the bitstream encryption of Xilinx and Actel FPGAs,
our attack on the targeted Altera FPGA makes use of the physical leakage of the embedded decryption
module. However, a detailed specification of the design security scheme is not publicly available. By reverse-
engineering the Quartus II software application, we recovered all details and proprietary algorithms used
for the design security scheme. Our results show the vulnerability of the bitstream encryption feature of
both Altera’s Stratix II and Stratix III FPGAs to side-channel attacks, leading to a complete break of the
security feature and the anti-counterfeiting mechanism.

The remainder of this paper is organized as follows. In Section 2, we describe the steps needed to reverse-
engineer the Quartus II application in order to reveal the details of the design security scheme of Stratix IT
and Stratix III. Also, basic security problems of the according scheme are illustrated. The details of our side-
channel attacks on Stratix II are presented in Section 4 and Section 5. Section 6 deals with our side-channel
attack on the security feature of Stratix III, and finally in Section 7 we conclude and sum up our research
results.

2. REVERSE-ENGINEERING — DESIGN SECURITY SCHEME OF STRATIX Il

For an SCA, all details of the bitstream encryption scheme are required. However, this information cannot be
found in the public documents published by Altera. In this section, we thus illustrate the method we followed
to reveal the essential information, including the proprietary algorithms used for the key derivation and the
encryption scheme.

2.1. Preliminaries

The main design software for Altera FPGAs is called “Quartus II”. To generate a bitstream for an FPGA, the
Hardware Description Language (HDL) sources are first translated into a so called .SOF file. In turn, this
file can then be converted into several file types that are used to actually configure the FPGA, cf. Table 1.
For the purposes of reverse-engineering the bitstream format, we selected the .RBF type, i.e., a raw binary
output file. This format has the advantage that it can be used with our custom programmer, cf. Section 4.1.
For transferring the bitstream to the FPGA, Altera provides several different configuration schemes [Str
2007, p.131-132]. Table II gives an overview on the different available schemes. For our purposes, we used
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Table 1. Bitstream file formats generated by Quartus I

File extension Type

\

.HexOut | Hexdecimal Output
.POF |  Programmer Object File
.RBF | Raw Binary File
.TTF ‘ Tabular Text File
.RPD |  Raw Programming Data
JIC | JTAG Indirect Configuration

the Passive Serial (PS) configuration scheme, because it supports bitstream encryption and moreover, be-
cause the configuration clock signal is controlled by the configuration device.

Table II. Configuration modes for the Stratix I

Mode | Bitstream Enc.
Fast Passive Parallel (FPP) \ Yes
Active Serial (AS) | Yes
Passive Serial (PS) | Yes
Passive Parallel Asynch. (PPA) | No
JTAG \ No

Regarding the actual realization of the bitstream encryption, relatively little information is known. In
the public documents [AN3 2009] it is stated that Stratix II uses the AES with 128-bit key. Furthermore, a
key derivation scheme is outlined that generates the actual encryption key given two user-supplied 128-bit
keys. Apart from that, no information on the file format, mode of operation used for the encryption, etc. was
initially available to us. Thus, in the following, we analyze the functional blocks of Quartus I and completely
describe the mechanisms used for bitstream encryption on the Stratix II.

2.2. RBF File Format (Stratix Il)

In order to understand the file structure of an .RBF file, we generated both the encrypted and the unen-
crypted .RBF files for an example design and compared the results. We found that the file can be divided
into a header and a body section. Comparing the encrypted and the unencrypted .RBF files, we figured
out that only a few bytes vary in the header. In contrast, the bodies containing the — possibly encrypted
— actual bitstream are completely different. The unencrypted file’s body contains mainly zero, while the
encrypted file consists of seemingly random bytes.

We encrypted the same input (.SOF file) twice, using the same key both times. It turned out that the
resulting encrypted bitstreams are completely different, with differences in some header bytes and the com-
plete body. Thus, the encryption process appears to be randomized in some way. Experimentally, we found
that this randomization is based on the current PC clock only. Using a small batch script, we fixed the
PC clock to a particular value and again generated two encrypted .RBF files. The resulting files were com-
pletely identical, confirming the conjecture that the PC clock is used as an Initialization Vector (IV) for the
bitstream encryption.

To gain further insight into the internals of the file format, we used the reverse-engineering tool Hex-
Rays IDA Pro [IDA 2012]. This program allows to analyze the assembly code of an executable program (i.e.,
in our case the Quartus II bitstream tool) and run a debugger (i.e., display register values etc. ) while the
target program is running. Using IDA Pro, we obtained the file structure depicted in Figure 1 (for the specific
FPGA fabric EP2S15F484C5N).

Both the unencrypted and encrypted .RBF files start with a fixed 33-byte “pre-header”. The following 40
bytes include the IV used for the encryption. For the unencrypted file, the IV is always set to 0xFF. . .FF,
while for the encrypted file the first (left) 32-bit half is randomized (using the PC clock). The right 32-bit
half is set to a fixed value. However, the IV is not directly stored in plain; rather, the single bits of the IV
are distributed over several bytes of the header. Using IDA Pro, we determined the byte (and bit) positions
in the header at which a particular IV bit is stored.
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unencrypted.rbf encrypted.rbf
Fixed Pre-Header Fixed Pre-Header File
33 Bytes 33 Bytes Haader
Coded Header with Coded Header with
IV=0xFF..FF(64 Bit) Random IV (64 Bit)
40 Bytes _ 40 Bytes
CRC16 Modbus over CRC16 Modbus over
Coded Header Coded Header
2 Bytes _ 2 Bytes B}
Fixed Bodypart Fixed Bodypart Fi
! ile
21050 Bytes 21050 Bytes - Body

: Unencrypted Bitstream Encrypted Bitstream
569068 Bytes 569085 Bytes

Fig. 1. Structure of an unencrypted and an encrypted .RBF file

Table III shows the resulting IV bit positions. The notation Yy;x refers to bit X (big endian, X € [0, 7]) of
the byte at position Y in the .RBF file. Note that the byte positions are counted starting from the beginning
of the .RBF file, i.e., including the fixed 33-byte pre-header.

Table I1l. Mapping between the 1V bits and the header bytes

IVbit | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56
Position || 493 | 48bit3 | 47vits | 46bits | 4Obits | 44bits | 43bits | 42bits
IVbit || 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48
Position || 5Tit3 | 56bit3 | 55bit3 | 54bita | 53bitz | 52bita | 5lwita | 50bit3
IVbit || 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40
Position || 65pi3 | 64pit3 | 63bits | 62bits | 61lpics | 60pits | 59bit3 | 58bits
IVbit | 39 | 88 | 37 | 36 | 35 | 34 | 33 | 32
Position || 33pita | T2hit3 | 7lbits | 7Obit3 | 69bit3 | 68bita | 67nita | 66pit3
IVbit || 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24
Position || 41pis | 40bita | 39ita | 38bita | 37bita | 36bita | 35bita | 34bita
IVbit || 23 | 22 | 21 | 2 | 19 | 18 | 17 | 16

Position || 49uits | 48bita | 47hita | 46bita | 45bita | 44bita | 43bita | 42bita
IVbit || 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8

Position || 57pits | 56bita | 55bita | 54pita | 53bita | 52bita | 5lpita | 5Opita
hit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o

Position || 65pits | 64bita | 63bita | 62pita | 6lpita | 60bita | 5%ita | 58pita

Only the third and fourth bit of a byte is used to store the IV bits. The other bits of the header are
constant and independent of the IV. We assume that these bits store configuration options, e.g., whether the
bitstream is encrypted. The header is followed by a two-byte Modbus CRC-16 [CRC 2012] computed over
the preceding 40 header bytes for integrity check purposes.
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The body starts with a 21050-byte block identical for both encrypted and unencrypted files. This block
is followed by the actual (encrypted or unencrypted) bitstream. The unencrypted bitstream has a length of
569068 bytes. For the encrypted bitstream, 17 additional bytes are added. This is due to the fact that for the
encrypted format several padding bytes are added. For the purposes of our work, the details of this padding
are irrelevant, as the additional block does not carry data belonging to the actual bitstream.

2.3. AES Key Derivation (Stratix Il)

In the publicly available documents, it is stated that the 128-bit AES key used for the bitstream encryption
is not directly programmed into the Stratix II. Rather, two 128-bit keys denoted as KEY1 and KEY2 are sent
to the FPGA during the key programming. These keys are then passed through a key derivation function
that generates the actual “real key” used to decrypt the bitstream. The idea behind this approach is that if
an adversary obtains the real key (e.g., by means of a side-channel attack), he should still be unable to use
the same (encrypted) bitstream to program another Stratix II (e.g., to create a perfect clone of a product).
Since the real key (of the second Stratix II) can only be set given KEY1 and KEY2, an adversary would have
to invert the key derivation function, which is supposed to be hard. We further comment on the security of
this approach in the case of the Stratix II in Section 2.3.2.

Initially, the details of the key derivation were hidden in the Quartus II software, i.e., the software ap-
pears as a complete black-box. As depicted in Figure 2, Quartus II produces a key file (in our case Keyfile.ekp)
that stores the specified KEY1 and KEY2. This key file is later passed to the FPGA, e.g., via the Joint Test
Action Group (JTAG) port using a suitable programmer.

PC Software

KEY1 KEY2 User Design
128 Bit 128 Bit .SOF FILE

\J \d Y

Quartus Il Blackbox

with AES-128 engine

M

Keyfile.ekp
(stores KEY1/KEY2) encrypted.rbf
One-time KEY &
Programming Configure
T, T rrrer ; encr\ruted I'bF

Insecure
Channel

Fig. 2. Quartus II black-box generating encrypted Stratix II bitstreams

However, the key derivation function obviously has to also be implemented in Quartus II because the
real key is needed to finally encrypt the bitstream. Hence, we again reverse-engineered the corresponding
scheme from the executable program. Most of the cryptographic functions are implemented in the DLL file
pegm_pgmio_nv_aes.dll. Apparently, the developers of Quartus II did not remove the debugging information
from the binary executable; hence the original function names are still present in the DLL.

Figure 3 shows the corresponding function calls for the key derivation and the bitstream encryption. First,
we focus on the key derivation, i.e., the upper part of Figure 3. Note that due to the available debugging
information, all function names are exactly those chosen by the Altera developers.

First, the do_something () function checks the used key length. Then, the make_key () function copies the
bytes of KEY1 to a particular memory location. The key_init () function then implements the key schedule
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Start Key function(KEY1,KEY2)

do_something() |-® make_key() —® key_init{) —® encrypt()

Bitstream Encryption ‘
make_encrypted_bitstream() <4 encrypt() -4 — key_init()
. loop +

Loop end

Fig. 3. Quartus II call sequence during the bitstream encryption (Stratix II)

algorithm of the AES, generating 160 bytes of round keys in total. encrypt () then encrypts KEY2 with
KEY1. Hence, the — previously unknown — key derivation function is given as

Real Key := AES128xgy; (KEY2),
where KEY1 and KEY2 are those specified in the Quartus II application.

2.3.1. Example for the Key Derivation. In order to further illustrate the details of the key derivation
function, in the following we give the inputs and outputs for the chosen KEY1 and KEY2 we used for our
analysis.

KEY1 (Quartus II input, little endian)
OxOF OE OD OC OB OA 09 08 07 06 05 04 03 02 01 00

KEY2 (Quartus II input, little endian)
0x32 00 31 C9 FD 4F 69 8C 51 9D 68 C6 86 A2 43 7C

Real Key = AES128kgy; (KEY2) (big endian)
0x2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

2.3.2. Security of the Key Derivation Function. At first glance, the approach of deriving the real key
within the device appears to be a reasonable countermeasure to prevent cloning of products even if the real
key has been discovered. Yet, it should be taken into account that an adversary knowing the real key is still
able to decrypt the bitstream and re-encrypt it with a different key for which he has chosen KEY1 and KEY2.
Nevertheless, a product cloned in such a way could be still identified, because the re-encrypted bitstream
will differ from the original one.

However, the way the AES is used for the key derivation in the case of the Stratix II does not add to the
protection against product cloning in any way: a secure key derivation scheme requires the utilized function
to be one-way, i.e., very hard to invert. For the Stratix II scheme, this is not the case. An adversary can pick
any KEY1 and then decrypt the — previously recovered — real key using this KEY1. The resulting KEY2
together with KEY1 then forms one of 2128 pairs that lead to the same (desired) real key when programmed
into a blank Stratix II. The device will thus still accept the original (encrypted) bitstream, and the clone
cannot be identified as such because KEY1 and KEY2 are never stored in the FPGA by design.

2.4, AES Encryption Mode (Stratix II)

Having revealed the key derivation scheme, we focus on the details of the actual AES encryption, i.e.,
analyze the lower part of Figure 3. First, the key_init function is executed in order to generate the round
keys for the (previously derived) real key. Then, encrypt() is invoked repeatedly in a loop. Using the
debugger functionality of IDA Pro, we exemplarily observed the following sequence of inputs to encrypt ():

0xB4 52 19 50 76 08 93 F1 B4 52 19 50 76 08 93 F1
0xB5 52 19 50 76 08 93 F1 B5 52 19 50 76 08 93 F1
0xB6 52 19 50 76 08 93 F1 B6 52 19 50 76 08 93 F1

Note that the first and the second eight bytes of each AES input are equal. Moreover, this 64-bit value is
incremented for each encryption, yielding (in this case) the sequence B4, B5, B6 for the first byte. Apparently,
the AES is not used to directly encrypt the bitstream. Rather, it seems that the so-called Counter (CTR)
mode [NIST 2001] is applied. Figure 4 shows the corresponding block diagram.

ACM Transactions on Reconfigurable Technology and Systems.



Physical Security Evaluation of ... 1.7

First Second Last
Encryption Emeryption Encryption
OxB4 52 1950 76 08 93 F1 0xB5 5219507608 93 F1
B452195076 0893 F1 ! B5521950760893 F1
128-Bit
oy REAL KEY v
AES-128 = - - AES-128 see
. ' | ' > see
. First raw XOR ! ‘Secorld raw_ _/vor
Bitstream Block | Bitstream Block ]
\J ! \
First Encrypted i Second Encrypted
Bitstream Block ! Bitstream Block

Fig. 4. AES in CTR mode (Stratix II)

In CTR mode, an IV is encrypted using the specified key (in our case the real key). The output (.e.,
ciphertext) of the AES is then XORed with the 16-byte data block to perform the encryption (of the bit-
stream blocks for the case of Stratix II). For each block, the IV is incremented to generate a new cipher-
text to be XORed with the corresponding data block. The XOR operation is implemented in the function
make_encrypted_bitstream().

As mentioned in Section 2.2, the IV is generated based on the PC clock. Indeed, we found that the first
four bytes of the IV correspond to the number of seconds elapsed since January 1, 1970. More concretely, the
(little endian) value 0xB4 52 19 50 represents the date 2012.08.01 18:00:52. The remaining four bytes
are constant. The overall structure of the IV is thus:

0xB4 52 19 5076 08 93 F1 B4 52 19 5076 08 93 F1.
—_—————— e —

Timestamp Fixed bytes Timestamp Fixed bytes

Having figured out the details of the AES key derivation and encryption, we implemented the aforemen-
tioned functions to decrypt a given encrypted bitstream. Given the correct real key and IV, we successfully
decrypted the bitstream of an encrypted .RBF file. Figure 5 summarizes the details of the bitstream encryp-
tion process of Stratix II.

2.5. Security of the IV Computation (Stratix II)

A different (potential) security problem that we noticed is the utilized IV computation scheme. Suppose a
design rbf is encrypted using KEY1 and KEY2. This leads to a specific real key rk. Hence, the 7’th encrypted
block of this design is given as:

EIVi,‘r‘k = AESlQST}C(IV + Z) D T‘bf7

For the case that a second configuration design is encrypted using the same KEY1 and KEY2, and hence,
the same real key rk, we obtain:
Ery . . = ABS128,,(IV +i) @ 70,
Note that the first IV depends on the system clock for both configuration designs. Hence, if the second
configuration design is being encrypted with a delay of = seconds, IV = IV + z holds. Thus, we get:

Er ., = AES128,,(IV +i) @ 1bf; = AES128,,(IV +i +2) ® 7b],

IV ;,r

Incrementing the IV z times — as it is performed due to the full encryption of the first conﬁgllration
design — leads to the IV IV + ¢ 4 . Thus, the ’th IV of the first encryption matches the first IV(IV + i =
IV + i + ) of the second encryption. This also implies that the ’th XORed value (i.e., AES128,.,(IV + z))
of the first configuration design encryption is identical to that of the first corresponding value of the second
configuration design encryption. Using the same key for two different encryptions can lead to a serious
problem because an attacker is able to cancel the key by XORing both ciphertext blocks. Table IV gives the
first five encrypted blocks, whereas the second encryption was invoked with a delay of three seconds, i.e.,
r = 3.
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Quartus Il KEYV1 KEY2 User Design
- 128Bit 128 Bit .SOF FILE
Stratix Il Blackbox -
Y Y
Generate Random Function(KEY1, KEY2) =
IV (64 Bit) AES128,c,(KEY2)
W“‘"---hqggv
ony i 128-Bit

I

IV (64 Bit) l Iv (64 Bit) e, Realkey

i IV=IV+Counter

AES128g,, k. (input)

P. Swierczynski et al.

Yy *x.th AES output ' v
| Create Key . . xth Bitstream Generate
File (stores sl oc Bitstream
| KEY1/KEY2) | l
.y TR : \
Code IV into Encrypted Create
File Head Bitstream RBF File
N v with fixed
A ¥ Header
Create
RBF File
v L] \J
Keyfile.ekp encrypted.rbf unencrypted.rbf

Fig. 5. Overview of the bitstream encryption process for the Stratix II FPGAs

Table 1V. Resulting 1Vs for two encryptions invoked at different points in time (Stratix II)

15t encryption 2nd epcryption (delay of z = 3 s)

Ervy,rk | -
Erv, vk | -
Ervy,rk | -
2,7
Ervs,rk ‘ Ery e = E1vs,rk
Erv, i ‘ By, op = E1vark

Computing the XOR between the values of the fourth row leads to:

Brvgk ® Erpy, . = (ABS128,5(IV 4 3) & 1bf3) & (AES128,, (IV + 0) @ 7bf)
= (AES128,,(IV + 3) @ AES128,1,(IV + 3)) @ (rbfs @ rbf,) = rbfs ® rbf,

An attacker is able to retrieve the XOR sum rbfs ® 71;70. Analogously, the computation can be repeated
for the fifth, sixth, ... row to obtain rbfs & rbf;, rbfs ® rbf,, ..., i.e.,, in general for ¢ > = (and a delay of
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x seconds) dif f; := rbf; ® rbf,_,. This XOR sum can only be computed if the second configuration design
is encrypted with a maximum delay of #bitstream blocks seconds, because then, no overlap of the utilized
IVs occurs between the encrypted configuration designs.

One might argue that this scenario is not a real threat because an attacker only possesses the XOR
difference between two configuration designs blocks, and hence is not able to reconstruct one of both bit-
streams. However, assume that a company encrypts two configuration designs rbf and rbf (both within
a short time range) using the same key rk. Later, one of the bitstreams, e.g., 7bf, becomes public (e.g., is
leaked or extracted by means of a side-channel attack). The attacker is then able to decrypt most of the
second conﬁgura/t_ii)n rbf with the help of the known bitstream rbf. To do so, he computes the XOR sum
diffi ® rbf;i = rbf;_,. The point of this section is to emphasize that — in certain situations — problems
may appear due to the bad design practice of encrypting two different configuration designs with the same
key. In general, a designer of cryptographic functions should try to avoid the usage of a timestamp as an
IV. At least, the IV should not be simply incremented (when using a timestamp) to avoid the described
problem of overlaps. This scheme has indeed changed in the newer FPGA families of Altera. As explained
in Section 3.3, the IVs for Stratix III FPGAs are not generated using a counter but a more complex update
function.

3. REVERSE-ENGINEERING — DESIGN SECURITY SCHEME OF STRATIX Ill

Similar to Section 2, we describe the reverse-engineering of the bitstream encryption scheme for Stratix III
FPGAs. The Stratix III series is the third generation of Altera FPGAs. According to [Corporation 2012b],
Stratix III is manufactured using a 65 nm process (while Stratix II FPGAs are based on a 90 nm process)
and has a lower static and dynamic power consumption than Stratix II. According to [Corporation 2012al,
Stratix III FPGAs additionally features a volatile key for the bitstream encryption. Moreover, the AES en-
gine uses 256-bit instead of 128-bit keys. Again, we were facing a black-box scenario, i.e., had no further
knowledge on the inner workings of the key derivation scheme, the utilized encryption mode, or the IV up-
date function. Thus, we continued reverse-engineering the Quartus II application and recovered the design
security scheme for Stratix III (FPGA fabric EP3SC150).

In the following, we first compare the structure of RBF files for the unencrypted and encrypted file. Next,
we reveal the changed key derivation scheme and provide the rules for computing the 256-bit real key
given 256-bit keys KEY1 and KEY2. Furthermore, we describe the utilized AES encryption mode, which is
different compared to Stratix II devices. The simple IV increment used by Stratix II devices (presented in
Section 2.4) has been replaced by a more complex update function f. The details of this function are given
in Section 3.4.

3.1. RBF File Format (Stratix Ill)

Comparing the unencrypted and encrypted RBF file (as done for an Stratix II in Section 2.2), we found that
the file format is basically the same as for Stratix II: The file header of an Stratix III RBF file is identical
to that of Stratix II. Again, the bits of an IV are distributed (and stored) in the header, applying the same
mapping rules as for Stratix II, cf. Table III. The CRC checksum is computed in an identical manner. The file
body of the Stratix III RBF file is similar to that of an Stratix II RBF file (cf. Figure 1). Only the size of the
fixed body and the bitstream differ. The fixed body of the targeted Stratix III consists of 78,636 bytes, while
for the Stratix II 21,050 bytes are used. The bitstream of Stratix III has a size of 5,847,954 bytes, compared
to 569,068 bytes for Stratix II.

3.2. AES Key Derivation (Stratix Ill)

The key derivation scheme of Stratix III FPGAs is similar to that of Stratix II FPGAs. Given two 256-bit
inputs KEY1 and KEY2, Quartus II first performs the AES key schedule for KEY1 (i.e., fourteen round
keys are derived). This implies that KEY1 is the AES key, while KEY2 is the AES plaintext. Since the AES
engine operates on 128-bit blocks, Quartus II splits KEY2 into two 128-bit halves and then encrypts each
half separately, using both times KEY1 as the key. Thus, the previously unknown black-box key derivation
function of Stratix III FPGAs is:

Real Key := AES256xgy; (15 128-bit KEY2) | | AES256xpy; (2™ 128-bit KEY2)

where the | | symbol denotes concatenation. As described above, the output block length is 128-bit, and
thus, the real key has (due to the concatenation) a length of 256 bit. The real key serves as the cryptographic
key for the actual encryption of all bitstream blocks. Figure 6 depicts the implementation of the secret
key derivation scheme in Quartus II. Note that the same security issue mentioned for the Stratix II key
derivation scheme (Section 2.3.2) holds for that of Stratix III. Having recovered the real key, one can select
an arbitrary KEY1 and obtain a valid value for KEY2 by decrypting both halves of the real key separately.
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Fig. 6. Quartus II black-box generating the Stratix III 256-bit real key

3.3. AES Encryption Mode (Stratix llI)

Analyzing the respective program code of Quartus II, we noticed that the first AES input is equal to the first
IV, which is stored in the RBF file. Observing that the first AES output is being XORed with the first unen-
crypted 16-byte bitstream block, we first assumed that the AES block mode is identical to that of Stratix IT
FPGAs. Against our expectations, we figured out that the second AES input was not the incremented IV.
Instead, the second AES input appeared as — initially — random bytes.

We performed further experiments to rule out certain modes of operation for the AES. For example, we
manipulated the first unencrypted bitstream block (using IDA’s debugger) before being XORed with the first
AES output. We noticed that the second AES input does not change when using the same first IV. Hence,
the Cipher Feedback Mode (CFB) mode can be excluded, since in this mode, the second AES input depends
on the XOR result of the first block. In addition, we noticed that the second and all following AES inputs are
not influenced by the choice of KEY1 or KEY2, and thus, are independent of the real key. Finally, we exclude
the CBC mode, because the first input would then be IV @ (1%t bitstream block), which is not the case.

Performing additional reverse-engineering and tracing the respective values in IDA’s debuggger, we found
that the AES is used to generate a stream of blocks that are XORed with the according bitstream blocks for
encryption, similar to the method used for Stratix II, cf. Section 2.4. However, the IV is not incremented,
but updated with a more complex function f. Figure 7 summarizes the bitstream encryption process for
Stratix III FPGAs.

The rationale for the introduction of f for Stratix III may be to avoid the potential security issue outlined
in Section 2.5. Moreover, the additional function f has to be reverse-engineered again to be able to decrypt a
bitstream, raising the bar for an adversary. However, f must be a deterministic function implemented both
on the FPGA and in the Quartus II application. Hence, it can be analyzed using IDA Pro. In the following
Section 3.4, we describe the results of this reverse-engineering process and reveal the details of f.

3.4. IV Update Function (Stratix Ill)

In this section, we present the realization of the IV update function f. With this knowledge, all AES inputs
required to decrypt a bitstream file can be reconstructed given the first IV and the real key. The first IV can
be extracted from the RBF file header with the help of Table III (as explained in Section 3.1). For reverse-
engineering f, we again observed the Quartus II application in the debugger. Figure 8 gives a simplified
overview of the executed functions.

As depicted in Figure 8, an initially unknown function sub_10007310(3) (implementing f) is executed to
generate the next input for the AES. The integer value “3” is passed as an argument to this function. When
observing the memory locations being read by this function, it turned out that the bytes located at address
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ps3 are repeatedly accessed. We found that the value at address p3 is updated three times (as specified by the
argument “3”) in a loop and that the result is directly related to the next AES input.

Subsequently, we analyzed the assembly instructions of f and found that the update is performed
as depicted in Figure 9. It turned out that f (sub_10007310(3)) implements a 64-bit Linear Feedback
Shift Register (LFSR). If the Least Significant Bit (LLSB) of the first byte I'V; is set to “1”, the value
0x20 24 00 10 10 00 00 01 is XORed to the current 64-bit state and the whole LFSR is rotated to the
right by one bit. If the LSB is set to “0”, the XOR operation is skipped. This process is repeated three times,
yielding the next AES input.

Algorithm 1 gives a possible implementation of the function f. With a C implementation of f, it took less
than one second to compute all IVs. As a side note, an adversary could alternatively also use a workaround
for decrypting an encrypted RBF file, for which no knowledge on f is required at all. It is possible to use
the Quartus II application itself as an oracle that provides all required AES inputs by setting the first IV in
the debugger and tracing all AES inputs. We exemplarily implemented an IDC script that is able to dump
all IVs directly using the IDA Pro debugger. All IVs can be obtained within approximately 3 hours of offline
computation using a standard PC.

4. SIDE-CHANNEL PROFILING OF STRATIX Il

With the knowledge of the bitstream encryption process presented in Section 2, we are able to analyze the
Stratix II from a side-channel point of view. To this end, in this section we first describe the measurement
setup and scenario. Then, as a prerequisite to the according key extraction attack (Section 5), we apply SCA
to find out the point in time at which the AES operations are executed. In the following, we refer to the used

ACM Transactions on Reconfigurable Technology and Systems.



1:12 P. Swierczynski et al.

Clocked 3 times

0x20 0x24 0x10 0x10 | ox01
v v v v v
XOR XOR XICIR XOR XOR

Fig. 9. Function f for IV update

ALGORITHM 1: Pseudo-code for IV update

Input: IV = Vg || IVz || IVe || IV5 || IVa || IVa || IVa || IVA, IV one byte
Output: Updated IV
fori=1...3do

if LSB(/V1) = 1 then

IV «+ IV & 022024001010000001

end if

IV <« rotate_right, (IV)
end for

Stratix II FPGA as Device Under Test (DUT). Also, we call — following the conventions in the side-channel
literature — the current consumption curves during the configuration process (power) traces.

4.1. Measurement Setup

Our DUT, a Stratix II FPGA (EP2S15F484C5N), is soldered onto a SASEBO-B board [AIST 2008] specifi-
cally designed for SCA purposes. The SASEBO-B board provides a JTAG port that allows one-time program-
ing KEY1 and KEY2 into the DUT. For our experiments we set the real key to 0x2B 7E 15 16 28 AE D2 A6
AB F7 15 88 09 CF 4F 3C, cf. Section 2.3.1.

We directly configure the DUT using the passive serial mode. For this purpose, we built an adapter
that conforms to [Str 2007, p.599]. We developed a custom programmer based on an ATmega256 nC. Thus,
we have precise control over the configuration process and are additionally able to set a trigger signal
for starting the measurement process. This helps to record well-aligned power traces. Finally, our uC also
provides the configuration clock signal to avoid (unwanted) internal clock effects that could, e.g., lead to
clock jitter and therefore to misaligned traces.

According to [Str 2007, p.148], the DUT has three different supply voltage lines: Vicint (internal logic,
1.15V-1.255V), Vicio (input and output buffers, 3.00V-3.60V) and Vicpp (pre-drivers, configuration, and
JTAG buffers, 3.135V-3.465V).

For our analysis, we recorded the power consumption during the configuration of the DUT by inserting
a small shunt resistor into the Vvt path and measuring the (amplified, AC-coupled) voltage drop using
a LeCroy WavePro 715Zi Digital Storage Oscilloscope (DSO) as depicted in Figure 10. We acquired 840,000
traces with 225,000 data points each at a sampling rate of 500 MS/s. The respective (encrypted) bitstreams
were generated on the PC built into the DSO and then sent to the DUT via the uC. The measurement
process was triggered using a dedicated uC pin providing a rising edge shortly before the first bitstream
block is sent.

During the decryption process of the encrypted bitstream, the AES is used in CTR mode. Hence, it might
be possible that the DUT performs the first AES encryption when the header is being sent because from that
time onwards, the DUT knows the IV (first AES input). Therefore, we decided to perform a new power-up of
the FPGA for each power trace that we measured. The corresponding steps are described in more detail in
Algorithm 2.
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ALGORITHM 2: Measurement steps

for i=1 to numberOfTraces do
uC] Perform DUT reset
uC] Transfer fixed 33-byte pre-header to DUT
PC| myIVI[0..7] + rand
PC| myHeader[] < Get header from .RBF file
PC| Code myIV[] into myHeader[] (Table III)
PC] Compute CRC-16 over coded header
PC] Send coded header with CRC-16 (42 bytes) to uC
uC] Transfer coded header (42 bytes) to DUT
uC] Transfer fixed body part (21050 bytes) to DUT
PC| Bitstream[0..47] < rand
PC]| Send Bitstream[] (48 bytes) to uC'
uCj Set trigger. Transfer bitstream (48 bytes) to DUT
DSO] Record power trace of the DUT
PC] Store trace ¢
[PC] Store myIV][]
end for

4.2. Difference between Unencrypted and Encrypted Bitstream

Using our measurement script, we recorded 10,000 power traces for the time range that includes the trans-
mission of 48 fixed, encrypted bitstream bytes. The FPGA decryption engine hence has the same input each
time. In addition to that, we performed the same measurements while sending 48 bytes of unencrypted bit-
stream. Finally, we computed the average power consumption over the set of our measured power traces,
once for the unencrypted and once for the encrypted bitstream. Figure 11 illustrates the corresponding mean
traces.

As it is clearly visible in Figure 11, there is a significant difference in the average power consumption be-
tween the processing of the unencrypted bitstream and the encrypted bitstream. While the FPGA processes
an encrypted bitstream, it consumes more energy compared to the processing of an unencrypted bitstream.
A difference is already visible at the point where the first bitstream block is being transferred to the DUT.
Thus, we assume that the AES encryption engine processes the first AES input (IV) while the programmer
transfers the first encrypted bitstream block to the DUT. We further conjecture that while the programmer
sends the second encrypted bitstream block, the DUT computes the XOR of the first AES output with the
encrypted bitstream and configures the corresponding FPGA blocks.
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Fig. 11. Average power consumption (10k traces) while sending an unencrypted (solid) and an encrypted
(dashed) bitstream (zoom on one byte)

4.3. Locating the AES Encryption

To verify our assumption on the correct time instance of the first AES encryption, we recorded another set of
measurements and measured 840,000 power traces, this time exactly as described in Algorithm 2. Then, for
our profiling, we used the known key to compute all intermediate AES values for each IV challenge/trace.

For a Correlation Power Analysis (CPA), [Brier et al. 2004], we used this set of power traces to com-
pute the correlation curves of about 220 different prediction models, e.g., each S-box bit of the first AES
round, several Hamming Distance (HD) models with different predicted register sizes, and several Ham-
ming Weight (HW) models for the intermediate AES states. As a result, the majority of our power models
revealed a data dependency between the predicted power models and the measured power traces. Hence, the
FPGA evidently leaks sensitive information. Figure 12 shows nine of the correlation curves for the states
after each AES round.

—Round 1
—Round 2
0.04 Round 3
—Round 4

Round 5
0.03 —Round 6

Round 7
Round &
—Round 9

Correlation Coefficient

=003 40 80 80 100 120 140 180 180 200 220

Time (ps)

Fig. 12. Correlation coefficient for one full AddRoundKey 128-bit state (one curve for each round). Utilized
models: 15t curve «+» HW of round 1, 2" curve +» HW of round 2, etc.

The first correlation curve (black) that exhibits a peak up to an approximate value of 0.05 between 30 and
65 microseconds is for the HW model of the 128-bit state after the first round of the first AES encryption.
The second correlation curve (red) is almost the same prediction model as before, but this time for the second
round, etc. . Each round of the first AES encryption leaks and therefore, the correct time instance of the first
AES encryption is located between 30 and 160 us.

In Figure 12, one can also spot the processing of the second AES encryption (starts at 180 us). Due to the
fact that only two bytes of the IV are incremented each time, for the second AES encryption, the first output
state (128 bits) is similar to that of the first AES encryption. Therefore, the prediction of the first state of
the first AES encryption automatically fits to the second encryption as well. Thus, the same leakage (black
curve in Figure 12) appears for both the first and second AES encryption. Even the states after round 2 of
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both encryptions are slightly similar, and the leakage peak (red curve) appears for both encryption runs.
Since the states (starting from round 3) are completely different for both encryptions, the predicted state of
round > 3 does not leak for the second encryption anymore.

5. SIDE-CHANNEL KEY EXTRACTION OF STRATIX Il

As shown in Section 4, the DUT exhibits a clear relationship between the power consumption and the inter-
nal states during the AES operation. In this section, we show how this side-channel leakage can be utilized
to extract the full 128-bit AES key from a Stratix I with approximately three hours of measurements and a
few hours of offline computation.

5.1. Digital Pre-Processing

As commonly encountered in SCA, the effect of the AES encryption on the overall power consumption is
rather small, cf. Section 4. Hence, digital pre-processing of the traces to isolate the signal of interest (and
thus reduce the Signal-to-Noise Ratio (SNR)) is often suggested in the literature in order to reduce the
number of required measurements [Barenghi et al. 2010]. In the case of the Stratix II, we experimentally
determined a set of pre-processing steps before performing the actual key extraction.

First, the trace is band-pass filtered with a passband from 500 kHz to 100 MHz. Then, the signal is subdi-
vided into windows of 750 sample points (i.e., 1.5 us at the sampling rate of 500 MHz), with an overlap of 50
percent between adjacent windows. Each window is zero-padded to a length of 7000 points. Then, the Dis-
crete Fourier Transform (DFT) of each window is computed, and the absolute value of the resulting complex
coefficients is used as the input to the CPA. Note that we found the frequency with the maximum leakage to
be around 2 MHz, hence, we left out all frequencies above 8 MHz to reduce the number of data points as well
as the computational complexity of the CPA. Hence, each window (0 ... 8 MHz) has a length of 112 points.

This approach was first proposed in [Gebotys et al. 2005] under the name of Differential Frequency Anal-
ysis (DFA). Since then, several practical side-channel attacks successfully applied this method to improve
the signal quality, cf. for instance [Oswald and Paar 2011; Plos et al. 2008].

5.2. Hypothetical Architecture

For a side-channel attack to succeed, an adequate model for the dependency between the internal architec-
ture and the measured power consumption is needed. Common models include the HW, which states that
the consumed power depends on the number of set bits in a register, and the HD, which predicts the power
consumption to be proportional to the number of switching bits in a register.

In the case of the Stratix II, the internal realization of the AES was initially unknown. Hence, we exper-
imentally tested many (common) different models, as mentioned in Section 4.3. As a result, it turned out
that the leakage present in the traces is best modeled by the HD within the AES state after the ShiftRows
step [NIST 2001]. More precisely, it appears that each column of the AES state is processed in one step, and
that the result is shifted into a register, overwriting the previous column (that in turn is shifted one step to
the right). The corresponding hypothetical architecture is depicted in Figure 13.

For the key extraction in Section 5.3, we thus use for instance the HD byte 0 — 4 (after ShiftRows in
the first AES round) to recover the first key byte, byte 1 — 5 to recover the second key byte, and so on.
As common in SCA, each key byte can be recovered separately from the remaining bytes, i.e., in principle
16 x 28 instead of 2128 key guesses for an exhaustive search have to be tested.

Note that, however, the initial state (i.e., the column overwritten with byte 0 ... 3) is unknown. Hence,
we consider each row of the first two columns together and recover the key bytes 0 and 4, 1 and 5, 2 and 6,
and 3 and 7 together, corresponding to 21¢ key candidates each. After that, the remaining eight key bytes 8
... 15 yield 8 x 28 candidates in total because the previous (overwritten) column values are known. The total
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number of key candidates is thus 8 x 28 + 4 x 216 = 264, 192 for which the CPA can be conducted within a
few hours using standard hardware.

5.3. Results

Using the described power model, we computed the correlation coefficient for the respective (byte-wise)
HD of the AES states. Figure 14 shows the result for the first S-box, i.e., the HD between byte 0 and 4.
Evidently, the correct key candidate 0x2B (black curve) exhibits a maximum correlation of approximately
0.05 after 400, 000 traces, clearly exceeding the “noise level” of 4//##races = 0.006 [Mangard et al. 2007].

All other (but one) key candidates stay below the noise level. However, a second key candidate 0xAB (red
curve) also results in a significant peak at a different point in time. This is due to the fact that, as explained
in Section 2, the first 64-bit half of the plaintext (i.e., the IV) equals the second half. Hence, a second key
candidate (from the second 64-bit half) also exhibits a significant correlation. Indeed, the second peak (red
one) belongs to the correct key candidate 0xAB for the corresponding key byte 8 in the second 64-bit half. As
expected, due to the serial nature of the hypothetical architecture, the correlation occurs at a later point in
time.

We conducted the CPA for all 16 AES S-boxes and obtained a minimal correlation coefficient (determining
the required number of traces) of p,,;n, = 0.031 for the fourth S-box. Hence, according to the estimation
given in [Mangard et al. 2007], the minimal number of traces to extract the full AES key is approximately
28/,2 =29, 136.

Figure 15 depicts the according correlation coefficient for the first S-box when leaving out the DFT pre-
processing step. In general, the results are similar to those of Figure 14, however, the observed correlation is
halved compared to the CPA with the DFT pre-processing. Overall, we obtained a p,,;,, = 0.021, i.e., 63,492
traces would be needed when leaving out the DFT pre-processing.

Using our current measurement setup, 10,000 traces can be recorded in approximately 55 min. Note
that the speed of the data acquisition is currently limited by the uC; thus, this time could be reduced with
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further engineering efforts. Nevertheless, the amount of traces required to perform a full-key recovery can
be collected in less than three hours.

6. SIDE-CHANNEL KEY EXTRACTION OF STRATIX Il

The platform we selected to examine the side-channel vulnerability of Stratix III FPGAs is a standard de-
velopment kit [sxi 2008] for the Stratix III EP3SL150F1152 high-performance FPGA. Note that in contrast
to the case of Stratix II this development board has not been designed for SCA. Hence, to measure the
side-channel signal, one option is to modify the board, e.g., by removing all capacitors buffering the supply
voltage and by putting a shunt resistor into the supply line. Another option (which we used) is to mea-
sure the side-channel leakage using an electro-magnetic (EM) probe. The FPGA, which is one of Altera’s
high-density FPGAs, is covered by a metal cap as a heat sink. On the other hand, this cap dampens EM
emanations that are observed with a probe on top of the FPGA. Therefore,we removed the cap by means of
mechanical tools to directly access the FPGA die.

Another issue was to select an appropriate probe and to localize the best probe position (with low noise
level) so that suitable side-channel leakage can be acquired. We experimentally tested several EM probes
and numerous different positions. The best result in our experiments was achieved with an H-Field near-
field RF-R 3-2 probe made by LANGER EMV-Technik [EMV 2013]. The probe position for which we observed
the best side-channel leakage is shown in Fig. 16. Since the amplitude of the signal was still low, we used
two Mini-Circuits ZFL-1000LN+ amplifiers [min 2013] connected in series to obtain EM signals filling the
input range of the DSO. The used DSO is the same as for Stratix II, i.e., a LeCroy WavePro 715Zi, however,
we performed the measurements at a higher sampling rate of 10 GS/s and a bandwidth of 1 GHz.

The measurement scenario is different compared to the case of Stratix II: Due to the counter mode used
in Stratix II, most of the AES plaintext bytes stay unchanged (in one power-up). This prevents side-channel
attacks to effectively recover all key bytes from a single power-up. Therefore, as stated in the Section 5,
we had to perform the measurement for Stratix II by repeating the following scenario: i) choose a random
1V, ii) power-up the Stratix II FPGA, and iii) measure a few traces corresponding to the first few encryp-
tions being performed by the FPGA. In contrast, as stated in Section 3.3, the counter mode is not used
by Stratix IIIFPGAs. Instead, two consecutive AES plaintext blocks differ completely, and thus each byte
is essentially randomized. Therefore, the aforementioned measurement process is not required here, and
one can measure the side-channel leakage during a single power-up of a Stratix III FPGA (configured by
the original encrypted bitstream). The corresponding IV can be extracted from the bitstream header, and —
with the knowledge provided in Section 3 — all plaintexts internally passed to the encryption module can be
computed.

The remaining task was to check whether the internal architecture we found for the Stratix II AES
module is identical for Stratix III. Since AES-256 is used in Stratix III, at least the key schedule and the
number of rounds compared to AES-128 of Stratix II are different. As the first step, we worked in a known-
key scenario and used the model that worked best for Stratix II. In other words, we computed the correlation
coefficient between the EM traces measured during one full power-up of the Stratix III, i.e., 365,000 traces,
and the HD of consecutive bytes in each row of the AES state after ShiftRows in the first round. The re-
sult shown in Fig. 17 clearly indicates the correctness of this power model and our guess for the internal
architecture.

In order to mount an attack, one has to first recover all 16 key bytes of the first round, which form the first
half of the 256-bit key. Due to the structure of AES-256, the second half of the key is used as the round key in
the second round. Therefore, after having recovered the first round key, the input of the second AddRoundKey
for each plaintext can be computed. Hence, the attack is extended to the second round by guessing 16
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Fig. 17. Correlation coefficient for the HD of the row-wise consecutive ShiftRows bytes using 365,000 traces
measured during one power-up of the Stratix IIT

additional key bytes (second part of the key). These bytes can be recovered using the same power model
and the same hypothesis for the architecture. Due to a higher noise level in EM measurements compared
to power traces, it might be the case that the traces measured during one power-up are not sufficient for a
successful side-channel key recovery. In this case, the measurement process can be repeated for more power-
ups — using the same encrypted bitstream — until the required number of traces has been collected. Similar
to the Stratix II, the quality of the traces could also be improved by applying filters. We should mention
that we have examined a complete key-recovery attack on different encrypted bitstream of Stratix III; in the
worst case, we required the traces of 5 power-ups to fully recover the 256 bits of the key.

7. IMPLICATIONS AND FUTURE WORK

Having reverse-engineered the relevant functions of the Quartus II program, all details of the bitstream en-
cryption, including the proprietary algorithms of the design security scheme of the Stratix II and Stratix III
FPGA families are revealed. Using this knowledge, a side-channel adversary can mount a successful key
recovery attack on the dedicated decryption hardware. As a consequence of our attacks, cloning of products
employing either Altera Stratix II or Stratix III FPGAs for which the bitstream encryption feature is en-
abled becomes possible. Moreover, an attacker cannot only extract and reverse-engineer the bitstream, but
might also modify it or create a completely new bitstream that would be accepted by the device. This fact
is especially relevant in military applications, but could also have a major impact in other cases, e.g., for
surveillance and Trojan hardware scenarios. Furthermore, an unencrypted bitstream allows an adversary
to read out secret keys from security modules or to recover classified security primitives.

Since the Stratix II family belongs to an older generation of Altera FPGAs, the fact that SCA counter-
measures have been ignored during the development appears likely. However, our findings show that this
issue has not been addressed in the newer generation as Stratix III. Note that recent families like Stratix V
or Arria II probably also feature an only slightly different scheme for bitstream encryption compared to
Stratix III. Therefore, with the knowledge we obtained by reverse-engineering the bitstream encryption
scheme and performing the attack on Stratix III, analyzing the security of the more recent Altera FPGAs
from an SCA point of view is interesting for future work.
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